Why Hydrogen?

Nov. 2, 2005

CARB Hydrogen Highway Network Workshop

Alec Brooks
alecbrooks@earthlink.net

Environmental Goals SB 76

- 30 \% reduction in GHG
- 33 \% production from new renewable sources
- No increase in toxic or criteria pollutants
- Use of renewable hydrogen generation or energy station concept with electricity production

Greenhouse Gas and Emissions due to Consumption and New Renewables should be Based on Marginal Analysis

Agency Response: ARB has always based its estimates of upstream emissions from battery EVs on marginal emissions in the South Coast Air Basin. Under the assumptions used most recently by the California Energy Commission, electricity produced for battery EVs would come from extremely clean natural gas turbines. ARB would use the same process for determining the upstream emissions from fuel cell vehicles.

Supplement to the Final Statement of Reasons for Rulemaking, Feb 20, 2004

- Additional electricity consumption increases emissions
- New renewables decrease emissions

New renewables should be not be limited to hydrogen vehicles; also evaluate new renewables as part of other vehicle options.

CO2 Emissions Metrics

- Gasoline
- CO2: 10.9 kg per gallon, including upstream emissions (GREET 1.6)
- Electricity
- CO2: $0.442 \mathrm{~kg} / \mathrm{kWh}$, Combined cycle natural gas turbine, 7500 BTU(hhv)/kWh, 8\% T\&D loss

Hydrogen Production with Electricity

- 65 kWh per kg : Stuart datasheet, and as derived from Honda's published data on solar hydrogen station
- Includes electrolysis and compression
- In a fuel cell, 1 kg of hydrogen produces about 16 kWh of electricity to drive the wheels (50\% efficiency)
- 65 kWh in; 16 kWh out Overall efficiency 25\%; 75% of input energy is lost

Daily Usage Scenario for Comparison of Alternatives

- 40 miles travel per day
- 33% of energy to make hydrogen comes from "new renewables", zero CO2
- 67% remaining energy from California grid at marginal emissions rate

Vehicle Comparison

- Gasoline - Honda Civic
- 34 mpg combined
- Hydrogen - Honda FCX
- 56.5 mpkg combined

Honda Civic Baseline

- 40 miles at $34 \mathrm{mpg}: 1.18$ gallons
- 1.18 gallons $\times 10.9 \mathrm{~kg} \mathrm{CO} /$ gallon
$=12.8 \mathrm{~kg} \mathrm{CO} 2$
- CO2 per mile:
$12.8 / 40=0.321 \mathrm{~kg} / \mathrm{mi}$ or $321 \mathrm{~g} / \mathrm{mile}$

Honda FCX

- 40 miles at 56.5 miles/kg: 0.708 kg H 2
- $0.708 \mathrm{~kg} \mathrm{H} 2 \times 65 \mathrm{kWh} / \mathrm{kg}=46 \mathrm{kWh}$
$\longrightarrow 33 \%$ new renewables: 15.2 kWh
- CO2: zero
$\rightarrow 67 \%$ grid electricity: $\quad 30.8 \mathrm{kWh}$
- CO2: $30.8 \mathrm{kWh} \times 0.442 \mathrm{~kg} / \mathrm{kWh}=13.6 \mathrm{~kg}$
- CO2 per mile:
- 13.6 kg / 40 miles: $341 \mathrm{~g} / \mathrm{mile}$

Hydrogen Vehicle Produces MORE CO2!

- Can't we do better than this using same amount of "new renewables"?

Gasoline Civic, Feed Same 15.2kWh New Renewables to Grid

- 40 miles at $34 \mathrm{mpg}: 1.18$ gallons, 12.8 kg CO2
- 15.2 kWh new renewables to grid
- CO2 reduction: $1.52 \mathrm{kWh} x$ $0.442 \mathrm{~kg} / \mathrm{kWh}=6.71 \mathrm{~kg}$ reduction
- Net CO2: $12.8 \mathrm{~kg}-6.71 \mathrm{~kg}=6.1$ kg
- CO2 per mile: $6.1 / 40=153 \mathrm{~g} / \mathrm{mi}$

Prius, with Same 15.2 kWh New Renewables to Grid

- 40 miles at $55 \mathrm{mpg}: 0.73$ gallons, 7.93 kg CO 2
- 15.2 kWh new renewables to grid
- CO2 reduction: $1.52 \mathrm{kWh} \times 0.442$ $\mathrm{kg} / \mathrm{kWh}=6.71 \mathrm{~kg}$ reduction
- Net CO2: $7.93 \mathrm{~kg}-6.71 \mathrm{~kg}=1.22$ kg
- CO2 per mile: $1.22 / 40=30 \mathrm{~g} / \mathrm{mi}$

Plug-in Prius

- 40 miles per day requires:

- 0.33 gallons gasoline (3.6 kg CO 2) and 6.5 kWh electricity
- Same 15.2 kWh new renewables as FCX
- 6.5 kWh to Prius, remaining 8.2 kWh to grid, offsetting 3.84 kg CO 2
- Net CO2: $3.6 \mathrm{~kg}-3.84 \mathrm{~kg}=-0.24 \mathrm{~kg}$
- CO2 per mile: $-0.24 / 40=-6 \mathrm{~g} / \mathrm{mi}$

Toyota RAV4 EV

- 40 miles x $0.319 \mathrm{kWh} /$ mile* $=12.8 \mathrm{kWh}$
- Same 15.2 kWh new renewables as FCX
- 12.8 to RAV4EV, remaining 2.4 kWh to grid
- CO2 : - $2.4 \mathrm{kWh} \times 0.442 \mathrm{~kg} / \mathrm{kWh}=1.08 \mathrm{~kg}$ reduction
- CO2 per mile: $-1.08 / 40=-27 \mathrm{~g} / \mathrm{mi}$

Comparative Electricity Use

- Fuel Cell Vehicle (FCX)
- $1150 \mathrm{~Wh} / \mathrm{mi}$
- Plug in Prius
- 0.33 gallon gasoline +6.5 kWh electricity provides 40 miles
- Standard Prius with 0.33 gallons would go only 18 miles
- Plug-in Prius: $6.5 \mathrm{kWh} / 40$ miles $=163 \mathrm{~Wh} / \mathrm{mi}$ electricity use, displaces 55% of gasoline that would have been used in a standard Prius
- RAV4EV
- $319 \mathrm{~Wh} / \mathrm{mi}$

Hydrogen Hype

Terry Tamminen, Schwarzenegger's leading environmental adviser, said Californians need only look upward for one huge, renewable source of hydrogen: water, a key component of the fuel. "That's just fuel falling from the sky," he said.

San Diego Union Tribune, Nov 22, 2004

Bargain Pricing

\$0.10/kg (but the electrolyzer uses about \$8.00 electricity/kg!)

Terry Tamminen, Diamond Bar, Sept 16, 2004

Conclusions

- Making hydrogen is the last thing you want to do with renewable electricity
- SB 76 targets for greenhouse gas and NOx can't be met using 33% new renewables
- The same amount of new renewables needed for 33% of a fuel cell vehicle's energy needs can be more effectively used for plug-in vehicles - negative total CO2
- California needs to reconsider focus on hydrogen
- Too inefficient, too costly, too impractical
- Plug-in vehicles use $1 / 4$ as much energy per mile and are far closer to commercialization
- The "Hydrogen Highway" should be replaced by the
"Energy Independence Freeway" - with main focus on practical and near-term solutions

